
INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS
https://doi.org/10.1080/17445760.2018.1539717

TDCS: a new scheduling framework for real-timemultimedia OS

Wei Hua,b,c, Tianao Maa,b,c, Yonghao Wang b,c, Fangfang Xua,c and Joshua Reissd

aCollege of Computer Science and Technology, Wuhan University of Science and Technology, People’s Republic of
China; bDMT Lab, Birmingham City University, UK; cHubei Province Key Laboratory of Intelligent Information
Processing and Real-time Industrial System, People’s Republic of China; dCentre for Digital Music, Queen Mary
University of London, UK

ABSTRACT
The emerging real-time hyper-physical system (CPS), such as autonomous
vehicle and live interactive media application, requires time deterministic
behaviour. This is challenging to achieve by using the traditional general
purpose operating system (GPOS). This paper presents a new design of
the real-time operating system (OS) scheduling mechanism called ‘time
deterministic cyclic scheduling’ (TDCS)mainly for livemultimedia tasks pro-
cessing. This new scheduler shares a similar philosophy as classic cyclic
executionbutwith flexibility anddynamic configuration. This hybrid design
is based on both time-reserved based cyclic execution and priority-based
pre-emptive scheduling for mixed criticality applications. The simulation
results show that this scheduling scheme can achieve predictable timing
behaviour of task delay and jitter under high CPU utilisation. This shows
that the proposed scheme is promising for low latency high-performance
multimedia censoring tasks that occur in a periodic manner.

ARTICLE HISTORY
Received 23 November 2017
Accepted 15 October 2018

KEYWORDS
Time deterministic;
multimedia; cyclic
scheduling; process
scheduling; real-time system

CONTACT Wei Hu huwei@wust.edu.cn

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2018.1539717&domain=pdf
http://orcid.org/0000-0002-4924-2508
mailto:huwei@wust.edu.cn

2 W. HU ET AL.

1. Introduction

The trend is to use the digital audio workstation (DAW) to perform live music on stage or as the mixer
for the front of the house (FOH) system or as the mixer for in-ear monitoring, because of the ver-
satile functionalities, flexible configurations, and expandability that DAW can achieve. On the other
hand, audio processing becomes increasingly multifunctional and complex. It is incorporated with
the advancement of computation, digital signal processing (DSP) and networking technologies such
as high-resolutionmultichannel audioprocessing, feature extraction,machine learning and intelligent
audio production [1].

Using DAW in a live or interactive environment is bounded by the responsiveness and temporal
perception of audio signals. Systems are restrained by interactions of the computational components
with the physical processes and are commonly referred to as cyber-physical systems (CPS) [2]. Using
DAWs in live or with interaction is an example of CPS.

DAWs are the software systems running on a general purpose operating systems (GPOS). Though
it is widely accepted compared with the real time (RT) system. GPOS does not have timing constraints
or time criticality. However, there are movements of GPOS towards the mixed criticality system. GPOS
has been widely used in various pseudo or soft RT situation, such as multimedia live streaming. An OS
that dealswith the different levels of time criticality is called themixed criticality (MC) system [3–5]. It is
worth noting the concept of MC implies some trade-off between isolation and integration of resource
sharing, whereas systems solely focusing on isolation of tasks are regarded as multiple-criticality
systems [5].

Mostmodern commodity GPOS such as Linux,Windows orMacOS all have some sort of hierarchical
scheduling schemes that enable real-time tasks to be executedwithminimum jitter and latency. Latest
WindowsOS has six different priority classes. MacOS has four different priority bands. Linux by default
uses Completely Fair Scheduler (CFS), but it can be configured to use the real-time scheduling policy
such as First in First Out (FIFO), Round Robin (RR) and Earliest Deadline first (EDF) with a priority level
of 99.

Real-time systems are the systems that not only perform computation with logic correctness but
also timing correctness [6,7]. One of the applications of real-time systems is the multimedia system
that supports low latency ‘live’ audio processing. There are classic real-time schedulers such as Cyclic
Scheduling, RateMonotonic Scheduling (RMS) and EDF. However, there is a trend to have RT extension
of GPOS such as real-time Linux, since the wide adoption of using open source GPOS in the industry
area.Mostmodern telecommunicationplatformsandprofessional live consoleshaveembeddedLinux
with RT extension in them to ensure RT performance [8].

However, these modifications may not work for the hard RT system due to the non-deterministic
attributes of a file system and device drivers such as the Virtual File System (VFS) framework. That is
why traditional RTOS avoids using the file system. To be able to support hard RT in GPOS, one has to
rewrite all the file system interfaces anddevice drivers, such as theproposedwork fromCMU’s RTMach
and RT file system [9].

There are fundamental differences between RTOS and GPOS from a design point of view. RTOS
is optimised to be the worst case, whereas GPOS is optimised to be the average case; RTOS targets
on predictable scheduling, whereas GPOS targets on efficient scheduling; RTOS is simple executive
whereas GPOS has a wide range of services; RTOS tries to minimise the latency, whereas GPOS tries
to maximise the throughput. The earlier work of hard RT Linux proposed by Yodaiken et al. was done
by replacing all ‘cli’, ‘sti’ and ‘iret’ to the soft interrupt macros and using hardware-triggered inter-
rupts to execute hard RT tasks [10]. However, these hard real-time tasks have no access to Linux kernel
services.

Other effort [11] tried to emulate RTOS within GPOS to provide soft RT performance. This paper
predicts that the GPOS will be more popular for a soft real-time task such as telecommunication and
finance transactions. This research direction is interesting since it is reappearing in the contemporary
cloud and virtualisation trend.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 3

In this paper, we proposed a new set of the OS scheduling framework that is called (TDCS) that is
specifically tailored for a real-time multimedia system with trading off mechanism of latency and pre-
dictable QoE requirements that aims to achieve the predictability of certain tasks using the systematic
design approach. The performance evaluation based on simulation between TDCS and RMS is also
given to show the pros and cons of it.

2. Background

2.1. Multimedia support on RTOS andGPOS

Therewereattempts to implementRMSor itsmodifications suchas statistical RMS [12] inGPOS inorder
to supportmultimedia applications such as live streaming. RMS is extended into SRMS (statistical RMS)
to accommodate for various execution times with average QoS. Then SRMS has been implemented in
KURT Linux [13]. TheRT Linuxworkwas initially drivenby requirements from the live audio community.
In 2005, the main target of RT Linux is to support high-performance multimedia and telecommunica-
tion applications [14]. Dietrich and Walker also revealed an anecdote regarding an open letter from
the audio community to the Linux kernel community that is called ‘a joint letter on low latency and
Linux’ in 2000. This open letter influenced the RT pre-emptive patch developed from 2001.

Since 2008, Linux-based Android OS has gained popularity not only in the smart phone area
but also in the embedded world such as set-top boxes and media players. There are development
and commercial initiatives to make Android OS to support RT applications including on-demand or
interactive media applications [15].

2.2. Live audio processing using OS

Using general operating systems satisfies versatile processing requirements for intelligent audio pro-
duction [16], such as configurable feature extraction, machine learning and digital signal processing
(DSP) tasks. It can process multiple channels with different source sampling rates and flexible rout-
ing. This often results in occasional bursting CPU utilisation that is close to full, which often cause the
unpredictable jitter of delay of real-time task processing [17] and audio signals [18].

The most concerns of these configurations are the latencies caused by DAWs. In the area of audio
engineering, the ‘livens’ of an audio application dictates the sternness of the input output delay
[19–21]. The latency caused by DAWs is due to various signal conversions, processing, buffering,
software algorithms and underline OS scheduling.

Using GPOS with software RT extensions reduces the audio processing latency. However, we sus-
pect that using pre-emptive priority scheduling based OS to carry real-time tasks with optimisation
can achieve the performance at most of the time, although rarely but it still can fail occasionally [17].

It shows for low buffer settings such as a few audio samples (under 1ms), the system might only
successfully schedule the taskswithin timeunder certain percentage statistically. In addition, the tradi-
tional heuristic andadhocdesignapproacheshave the samepredictability problemasdescribed in [7].
The trial and error approach needs to be adopted to find out theminimum latency. This poses the chal-
lenge of using traditional scheduling especially when the time and jitter constraints have to be met,
whereas the environment has mixed criticality and with sporadic burrstones of tasks. For audio pro-
cessing, this often results in losing of audio samples occasionally. The human ear is especially sensitive
to the timing correctness, even one sample missing will cause audible effects.

2.3. The cross-adaptivemodel basedmedia processing

In terms of audio, video, and multimedia, due to the real-time nature and specificity of multimedia
tasks, themajority of the tasks are periodic. Themodern system tends to dealwithmultiple channels of
media sourceswithpossibledifferent rates.Whenprocessing themedia stream, it oftenneeds tobased
on timely extracted features from the media to control the process algorithms. This cross-adaptive

4 W. HU ET AL.

Figure 1. Cross-adaptive audio processing architecture.

model becomes increasingly popular in the AI-basedmedia processing [16]. The cross-adaptivemodel
is expressed in Figure 1.

3. Literature review

Cyclic executive scheduling is one of the earliest schemes that is realised in the real-time operating
systembetween the1970s and1980s [22], especially for hardRT tasks.When the system is complex, it is
regarded as inflexibile and difficult to maintain. The rate monotonic scheduling (RMS) and the earliest
deadline first (EDF) were proposed to overcome these difficulties to assign priority dynamically based
on the characteristics of tasks. In the case of RMS, the tasks with the shortest period are assigned the
highest priority [23–26].

RMS enabled significant engineering advancement in many areas such as space exploration. On
the other hand, themodern forms of cyclic executive based approaches can be found in safety-critical
systems as a temporal segmentationmechanism such as ‘ARINC Specification 653’ that sets standards
for avionics RTOS [27] and ‘WorldFIP’ that defines the Factory Instrumentation Protocol which later
becomes a part of the IEC 61158 standard [28]. The cyclic executive approach often is part of the
hierarchical scheduling model to ensure temporal segmentation [4,29].

The modern live and interactive multimedia system is an example of a cyber-physical system (CPS)
that integrates different inputs and outputs’ functions with physical interactions. It has a variety of
tasks that require different criticality. In the following, we can look into the characteristics of these live
multimedia systems.

3.1. The characteristics of themodern real-timemultimedia system

Traditionally, there are two categories of real-time systems: hard real-time system and soft real-time
system. In a hard real-time system, the missing deadline of tasks is regarded as a failure, whereas the
soft real-time system can have some level of tolerances of missing deadlines. Some textbook regards

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 5

the multimedia system as a hard real-time system, due to the strict jitter requirements or human
perception of glitch caused by missing the task deadline.

We think the livemultimedia system is neither hard real-time nor soft real-time. It lies in between. In
a professional audio environment, we would not want to miss any audio/video frames that cause the
negative perceptual effects. The jitter of processing single audio or video frame canbe toleratedwithin
acceptable user perceptions, using a de-jitter buffer to compensate it at the cost of delay. However,
the behavior of jitter should bepredictable. In summary, the characteristics of such a systemare below:

• It mainly deals withmultiple periodic tasks at different update rates with pseudo isochronous tasks
pattern.

• It is acceptable tomiss the deadline for some tasks butwill affect the quality of experiences. Ideally,
those tasks that missed deadlines shall not be discarded but still be scheduled at later points.

• It shall provide the trade-off between delay and jitter, using a buffer to mitigate the jitter of the
samples. There shall not be any unexpected jitters when the CPU utilisation is close to full.

The traditional cyclic schedulingbasedapproach is difficult togrowandmaintainwhen thenumber
of tasks increases and the periods of tasks are not harmonically related. However, the properties of the
multimedia system indicate there are compromises that can be made to adjust the tasks’ deadlines
within the perceptual tolerance to simplify the system realisation and increase the efficiency of the
scheduler.

4. Proposed scheduling scheme

Therefore, we propose a new scheduling scheme that is called TDCS that provides a trade-off between
the overall input output delay with other system measures that are based on a traditional cyclic exe-
cution based scheduling. In addition, the TDCS is the main part of a hierarchical scheduling scheme
for the mixed criticality system.

4.1. Model of ratemonotonic tasks

In a real-time system, a task consists of a sequence of jobs. For rate monotonic tasks, we have τ =
{τ1, τ2, . . . τn}, where τ is a task set that contains n different tasks. Each task can be defined as τ =
{Ci, Ti, Di, Pi}, where

• Ci is worst-case execution time;
• Ti is the period of τi;
• Di is the deadline of τi;
• Pi is the priority of τi;

For each task, the CPU utilisation is Ui = Ci/Ti, so the total utilisation is

U =
∞∑
i=1

Ui (1)

Normally we have Di = Ti. The rate monotonic scheduling (RMS) algorithm assigns the task priority
according to the task period. The task with a shorter period has a higher priority. Liu and Layland [24]
proved that the sufficient condition of scheduling of RMS is

U ≤ n(21/n − 1)
n=∞−→ 0.6931 (2)

6 W. HU ET AL.

where n is the number of tasks. This condition is sufficient but not necessary based on the tasks that
are preemptible. Lehoczky 1989 [30] showed the sufficient and necessary condition of schedulability
of RMS with less up bond CPU utilisation but more complex schedulability test formula.

4.2. TDCS algorithm

4.2.1. Temporal segmentation
The foundation of timing correctness this scheduling is based on temporal segmentation is similar to
the ARINC 653 standard. TheOS is partitioned as independent hyper-periodic segments ormajor cycle
in a time domain driven by an accurate low level system timer. We define this cycle as Tc. The chosen
Tc is decided by applications’ context.

The selection of the length of segmentation is similar to the problem of selection of hyper-period
or size of ‘Super frame’. However, we have the flexible architecture of using the segmentation size that
practically matches the requirements of the connected system such as USB or networking interfaces.

In theory, the period of temporal segmentation can be the lowest common multiple (LCM) of dif-
ferent task periods. However, this can be very large and impractical to implement. In our design, the
period tasks will go through two buffer systems an input ‘mapping buffer’ and an output ‘de-jitter
buffer’. The former buffer is used to convert to an arbitrary hyper-period that one wants. The second
buffer is to render the tasks as their own source rate.

4.2.2. Hyper-period conversion algorithms
The selection of the hyper-period in TDCS can be flexible. It is not necessary for the LCM of periods of
all tasks. As mentioned above it could depend on the application context that is driven by a master
clock or the design criteria that need to protect the criticality within a certain time period.

We define LCM of the periods of all tasks as ‘major cycle’ to be TL and ‘minor cycle’ to be Tc. We can
have a different way to decide the value of Tc.

For example, Tc can be the longest period of tasks to be scheduled when the CPU utilisation is
under the upper bond of RMS schedulability conditions. In the case of the very high CPU utilisation
that exceeds RMS schedulability but under 100%,weproposed an ‘expandedhyper-period conversion
algorithm’ to calculate Tc.

Case 1 General hyper-period conversion algorithm: We propose a hyper-period conversion
algorithm to convert different Ti to new T ′

i . For example, the following algorithm converts the longest
Ti as a minor cycle Tc that is normally much shorter than the LCM based hyper-period:

We define the following formula:

Tc = max{Ti} (3)

TL = LCM{Ti} (4)

Ki =
⌈
Tc
Ti

⌉
(5)

we have fc = min{fi}. Increase fi by�fi to be f ′i so that f
′
i = Kifc, where Ki is an integer. We have the

new hyper-period Tc and for each task τi, we can schedule Ki of them in one hyper-period.
For instance, for 3 tasks with period {10,20,35}, the TL is 140. fi = {14, 7, 4}, we then can find

fi
′ = {16, 8, 4} and Ki = {4, 2, 1}. So in this case, we can use a Task 3 period as the hyper-period. With

a task queue, we schedule Task 1 four times, Task 2 twice and Task 3 once within the hyper-period.
We introduce a scheduling jitter �fi that can be mitigated by the de-jitter task queue. This algorithm
creates empty scheduling slots f empty

i , which can be calculated as below:

fempty
i = f ′i − fi = Ki × TL

Tc
− TL

Ti
(6)

LetM = TL/Tc, we haveM number of minor cycles in one major cycle.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 7

Case 2 Expanded hyper-period conversion algorithm: For the CPU utilisation exceeds the upper
bond of RMS schedulability, we can alter the algorithm and provide new hyper-period and Task
mapping ‘As tight as possible,’ for utilisation that is close to 100%.

Let total empty slots in one Tc be TS, we have

TS =
N∑
i=1

�fi × Ci =
N∑
i

fempty
i × Ci (7)

Tce = Tc + TS

M
(8)

In this case, the newminor cycle Tce shall guarantee all the tasks to be scheduled even when the total
CPU capacity is 100%. However, for the major cycle the production of Tce and M exceeds the value
of LCM. We can further have an adjustment algorithm to make an uneven minor cycle to fit all tasks
within one major cycle LCM.

Let j be the index of a minor cycle Tce within the major cycle, so we have

TL =
M∑
j=1

T ′
ce(j) (9)

Therefore we can have the uneven Tce′(j) can be calculated below. Let

jexpand = min
{⌊

fi
Ki

⌋}
(10)

T ′
ce(j) =

⎧⎪⎨
⎪⎩
Tce j ≤ jexpand

Tce -
|τ |∑
i=1

Tj(i) j > jexpand
(11)

where

Tj(j) =
{

(j × K − fi) × Ci j × Ki > fi > (j − 1) × Ki
Ki × Ci j × Ki − f > Ki

(12)

where 1 ≤ j ≤ M and 1 ≤ i ≤ |τ |.

4.2.3. Periodic tasksmapping schemes.
For the most period task τi that happens every Ti, the tasks are scheduled off-line by allocating the τi
in the cycle Tc. This is done by the task allocation mapping algorithms given below:

(1) Calculate the number of tasksN of τi in everyminor cycle byN ≥ (Tc/Ti). For example, if Tc is 20ms,
Ti is 5ms, then N = 4;

(2) Allocate K timingpositionswithin every Tcfor τi to ensure the samepositions for every TL for any τi.
There are differentmethods to allocate the positions such as ‘even spread,’ or as ‘tight’ as possible.
Each of them have different performance effects.

(3) Prepare themultiple low level timers for dispatching themapped task τi and prepare the de-jitter
input/output task queue for τi.

One of the advantages of TDCS is the predictability and CPU utilisation. We implement the TDCS
scheduling algorithm with the ‘As tight as possible’ tasks mapping scheme and carried out the test.
The various results are comparedwith classic RMS and Non-Preemptive RMS (NP-RMS). Next, we show
the performance of TDCS in comparison with RMS and NP-RMS (Figure 2).

8 W. HU ET AL.

Figure 2. Periodic tasks mapping.

Table 1. Simulation tasks sets and CPU utilisation.

Task Set Details Utilisation

Set 1 Task 1= {2,10,10} 68.57%
Task 2= {4,20,20}
Task 3= {10,35,35}

Set 2 Task 1= {2,10,10} 82.86%
Task 2= {4,20,20}
Task 3= {15,35,35}

Set 3 Task 1= {2,10,10} 97.14%
Task 2= {4,20,20}
Task 3= {20,35,35}

4.3. Compare TDCSwith non-preemptive RMS and RMS

It is worth to compare TDCS with classic fixed priority scheduling algorithms. For multimedia appli-
cations, the absolute deadline is not essential. The non-preemptive RMS (NP-RMS) [31,32] is the RMS
scheduling algorithm without preemption which reduces the system complexity. NP-RMS is suitable
for multimedia applications where hard RT is not essential. We compare TDCS with both RMS and
NP-RMS based scheduling policies. We implemented TDCS scheduling in TORSCHE [33].

4.3.1. Schedulability simulation
We define three task sets that represent the load of CPU from sparse to dense. The task sets used
for simulation is described in Table 1. Set 1 is designed so that all three schedulers can successfully
schedule all the tasks. Set 2 is designed to make NP-RMS fail to schedule, whereas RMS and TDCS can.
Set 3 is designed to simulate so that the CPU is heavily loaded so that both RMS and NP-RMS will miss
some deadlines (Table 1).

4.3.2. Simulation results
Figure 3 shows the simulation results of Set 1 which has an average CPU utilisation of 68.57%. The top
sub figure shows the three original tasks defined in Set 1. Task 1 has the highest frequency hence will
be assigned to the highest priority in the RMS scheduling policy. The Pb process is the background
non-RT tasks that can be fit into the gap of RT tasks. The second sub-figure of Figure 3 is the task map
of RMS, which shows that some of task 2 and task 3 are delayed or interrupted but can finish within
the deadline Di. The third sub figure of Figure 3 shows the task map of NP-RMS scheduling. For NP-
RMS, none of the task can be interrupted, so even the highest priority tasks in task 1 have shown some
delays. The bottom sub figure in Figure 3 shows the taskmap of TDCS. We use the ‘as tight as possible’
tasks’ mapping scheme to maximise the capacity of the system. It shows a clear pattern within the
minor cycle and major cycle.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 9

Figure 3. Simulation results for set 1.

Figure 4 shows the results of Set 2 where the average CPU utilisation is 0.8286: In this case, the non-
preemptive scheduling algorithm cannot schedule all the tasks. Some tasks in Task1 get lost such as
the 2nd 5th, 9th and 13th tasks in Task 1. Figure 5 shows the results of Set 3 which has an average
CPU utilisation of 97.14%. In this case, both non-preemptive RMS and RMS scheduling algorithms can-
not schedule all the tasks. But with the expanded hyper-period conversion algorithm and ‘as tight as
possible’, the TDCS can successfully schedule all the tasks.

4.3.3. Jitter of individual delay simulation
Figure 6 shows the individual task starting time (a) and the delay between the time of the tasks actu-
ally starting execution and the time when the tasks are released (b). Figure 6 is based on Set 1 and
compares between TDCS with NP-RMS. Figure 7 is also based on Set 1, but shows the results between
TDCS and RMS. The negative value of TDCS delay in the figures is because we buffered TDCS tasks and
condense the ‘future’ tasks together as often done in frame-based audio processing. It shall be added
with an offset of buffering delay.

RMS and NP-RMS perform very well if the tasks’ loading is not very high. The simulation shows
the ‘As tight as possible’ tasks mapping of TDCS that is geared towards maximising CPU utilisation.
Therefore, TDCS shows some fluctuations of tasks delay in comparison with the tasks’ release time.
With the de-jitter buffer, this effects will be alleviated. We will conduct in-depth research on how to
reduce buffer.

4.3.4. Overall task throughput simulation
In this simulation, we create random tasks sets for all three cases TDCS, RMS and NP-RMS. The random
tasks sets have three RT takes making up the CPU utilisation range from 60%, 65%, . . . , until 100%.

10 W. HU ET AL.

Figure 4. Simulation results set 2.

Each case, we created 100 random sets. The percentages of RT tasks that can be executed successfully
are plotted against CPU utilisation for all three different scheduling algorithms. The result is shown in
Figure 8. It clearly shows that our proposed TDCS scheduling and ‘Expanded hyper-period conversion
algorithm’ can handle the task load up to 100%.

4.4. Using TDCS in theMC system

In this section, we briefly discuss how to use TDCS in a mixed criticality system or how to incorporate
TDCS with GPOS as RT extension.

4.4.1. Slack stealing
The new scheduling framework shall support the slack stealing concept. Even the multiple periodic
tasks would not occupy 100% of the CPU time. The background tasks Pb with a lower priority than
multimedia periodic tasks τi can be scheduled in the slack time of τi. However, they can be interrupted
by τi that has a higher priority and driven by a pre-set low level timer. This concept is demonstrated in
Figure 3.

4.4.2. Hierarchy priority scheme
The system can be designed with three tiers of priority ring. The inner ring has a higher priority. In the
inner most is the Tier 0 tasks that assigns to the most emergency tasks such as manually terminate
the programmer. The most multimedia periodic tasks will be given tier 1 priority. These tasks will be

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 11

Figure 5. Simulation results 3.

statistically scheduled off-line by TDCS before the task flow is initiated. The background tasks Pb are
assigned as tier 2. These can be based on classic pre-emptive scheduling and are scheduledwithin the
slack time of tier 0 and tier 1.

• Tier 0 emergency tasks – the adjustable system timer drives the major cycle and dispatches the
periodic tasks belonging to this tier.

• Tier 1 periodic task – multimedia live tasks. Audio samples or frames, video frames, period check
and control message.

• Tier 2 pre-emptive background processes.

4.5. Advantages and disadvantages of TDCS

There are a few advantages of integrating TDCS into the current system, especially in the mixed
criticality system or as RT extension of GPOS.

(1) Time deterministic for multimedia periodic tasks. The accurate delay can be estimated in
advance.

(2) Flexible hyper-period conversion schemes that can create different hyper-periods for different
application contexts.

(3) Support high CPU utilisation up to 100% with the selectable task mapping scheme.
(4) Simplified schedulability test, which enables the pseudo on-line scheduling mechanism.

12 W. HU ET AL.

Figure 6. Task delay and starting time TDCS vs NP-RMS.

(5) Efficiency: The multimedia tasks can be driven by low level system timer not the software
interrupts. It has fewer context switches.

One of the disadvantages of TDCS is similar to classic RMS and EDF that is to rely on worst-case
execution time (WCET) of proper off-line planning. If the WCET value is not accurate that will affect
the overall schedulability. TDCS also performs worse than RMS in terms of suitability for hard real-
time tasks, because TDCS provides flexibility of re-allocation of tasks in the time line. It introduces the
execution jitter; however, the jitter is predicable and can be managed.

4.5.1. Contribute to low latency
Using TDCS to schedule low latency audio tasks shall not allow the unexpected jitter and loss of
audio frames to happen in this case by providing full schedulability under 100% CPU load. The
system shall provide certainty of whether it can accept more tasks or not. It shall prevent the
uncertainty of scheduling latency performance when large high priority tasks are presented in the
system.

5. Conclusions

5.1. Summary

In this work, we present a new TDCS scheduling framework for real-timemultimedia applications such
as low latency audio processing. The design of TDCS is based on the classic cyclic executive concept

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 13

Figure 7. Task delay and starting time TDCS vs RMS.

butwithmore flexible allocationof tasks andhyper-perioddesign.With ever increasedCPUprocessing
power, the TDCS is designed with possibilities of integration of the MC system and GPOS in mind.

The simulation shows TDCS has comparable performance as classic RMS scheduling, especially
TDCS is flexible to use different hyper-periods that trade-off with re-allocation of tasks. In addition,
TDCS can achieve high CPU utilisation of RT tasks without loss of executions of tasks. That is important
for heavy loaded multimedia processing.

5.2. Further work

There are many areas of this work that can be further explored. One interesting work in theoretical
aspects might be to have a generic mathematical model for generating the arbitrary length of hyper-
periods that is optimised towards differentmeasures such asminimise jitter, delay, or tasks buffer. One
of the main direction of this work is to actually put this in use of GPOS such as the Linux system, so in
thenext step,wewill try to integrate TDCS into the current Linux kernel andprovide a feasible interface
to applications. It might result in some compromise of the original design and practical alteration of
the mechanism.

For developing the TDCS framework, such as TDCS use different schedulingmodes, more compact
scheduling or more smoother scheduling, further in couple with current computer science trends.
It is especially interesting to consider TDCS in virtualisation and cloud computing since most future
media play out will be cloud based along with portable smart clients. The mapping of the tasks of
different multimedia data on cloud computing and the mobile device is an interesting challenging
question. The research by Qiu and Zhao [34] provide a promising model that might be considered to

14 W. HU ET AL.

Figure 8. Task throughput vs CPU utilisation.

integrate with TDCS. For a large heterogeneousmemory structure that stores themedia files, Gai et al.
[35] demonstrate a good approach to move TDCS forward in the cloud computing area.

As Lee [2] mentioned, may be the biggest challenge for real-time in the CPS system is the absence
of time abstract from different lower layers. That is reflected as the difficulty of estimation of WCET
in many cases. For multimedia processing, lots of tasks are DSP based. It might be worth to see how
modernDSP accelerationmechanismcanbe accurately timed and reported for upper layer scheduling
algorithm such as TDCS.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by National Natural Science Foundation of China: [Grant Number 61602350].

ORCID
YonghaoWang http://orcid.org/0000-0002-4924-2508

References
[1] Reiss JD. Intelligent systems for mixing multichannel audio. International Conference on Digital Signal Processing.

Corfu: IEEE; 2011. p. 1–6.

http://orcid.org/0000-0002-4924-2508

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 15

[2] Lee EA. Cyber physical systems: Design challenges. IEEE Symposium on Object Oriented Real-Time Distributed
Computing. Orlando (FL): IEEE Computer Society; 2008. p. 363–369.

[3] Niz DD, Lakshmanan K, Rajkumar R. On the scheduling of mixed-criticality real-time task sets. Real-Time Systems
Symposium, 2009, RTSS. Washington (DC): IEEE; 2009. p. 291–300.

[4] Kelly OR, Aydin H, Zhao B. On partitioned scheduling of fixed-priority mixed-criticality task sets. IEEE, International
Conference on Trust, Security and Privacy in Computing and Communications. Changsha: IEEE Computer Society;
2011. p. 1051–1059.

[5] Burns A, Davis R. Mixed criticality systems – a review. York: Department of Computer Science, University of York,
Tech. Rep, 2013. p. 1–69.

[6] Stankovic JA.Misconceptions about real-time computing: a seriousproblem for next-generation systems. Computer.
1988;21(10):10–19.

[7] Buttazzo GC. Hard real-time computing systems: predictable scheduling algorithms and applications. Springer
Berlin: Science & Business Media; 2011.

[8] Leroux PN. RTOS versus GPOS: what is best for embedded development? Cupertino (CA): QNX Software Systems Ltd;
2005.

[9] Molano A, Juvva K, Rajkumar R. Real-time file systems: guaranteeing timing constraints for disk accesses in rt-mach.
Real-Time Systems Symposium, 1997. The IEEE Proceedings. San Francisco (CA): IEEE; 1997. p. 155–165.

[10] Yodaiken V. The RTLinux manifesto. Raleigh (NC): Proc of Linux Expo; 1999.
[11] Adelberg B, Garcia-Molina H, Kao B. Emulating soft real-time scheduling using traditional operating system sched-

ulers. Real-Time Systems Symposium; 1994. San Juan: IEEE; 1994. p. 292–298.
[12] Atlas A, Bestavros A. Statistical rate monotonic scheduling. IEEE Real-Time Systems Symposium. Santa Barbara (CA):

IEEE Computer Society; 1998. p. 123.
[13] Atlas A, Bestavros A. Design and implementation of statistical rate monotonic scheduling in KURT Linux. Phoenix

(AZ): Real-Time Systems Symposium; 1999. IEEE; 2002. p. 272.
[14] Dietrich ST, Walker D. The evolution of real-time linux. Rtl Workshop; 2005.
[15] Kalkov I, Franke D, Schommer JF, et al. A real-time extension to the Android platform. International Workshop on

Java Technologies for Real-Time and Embedded Systems. Copenhagen: ACM; 2012. p. 105–114.
[16] Reiss JD. Intelligent systems for mixing multichannel audio. International Conference on Digital Signal Processing.

Corfu: IEEE; 2011. p. 1–6.
[17] Williams C. Linux scheduler latency. Raleigh (NC): Red Hat Inc; 2002, 3.
[18] Wang Y, Stables R, Reiss J. Audio latency measurement for desktop operating systems with onboard soundcards.

London: Audio Engineering Society Convention; 2010.
[19] Lester M, Boley J. The effects of latency on live sound monitoring. 2007.
[20] Farner S, Solvang A, Sæbø A, et al. Ensemble hand-clapping experiments under the influence of delay and various

acoustic environments. Néphrol Thérap. 2009;57(12):268–269.
[21] Chafe C, Cáceres JP, Gurevich M. Effect of temporal separation on synchronization in rhythmic performance.

Perception. 2010;39(7):982.
[22] Baker TP, Shaw A. The cyclic executive model and Ada. Real-Time Syst. 1989;1(1):7–25.
[23] Sha L, Abdelzaher T, Erik årzén K, et al. Real time scheduling theory: a historical perspective. Real-Time Syst.

2004;28(2–3):101–155.
[24] Liu CL, Layland JW. Scheduling algorithms for multiprogramming in a hard-real-time environment. Readings in

hardware/software co-design. Norwell (MA): Kluwer Academic Publishers; 2001.
[25] Sha L, Rajkumar R, Sathaye SS. Generalized rate-monotonic scheduling theory: a framework for developing real-time

systems. Proc IEEE. 1994;82(1):68–82.
[26] Sha L, Goodenough JB. Real-time scheduling theory and Ada. Los Alamitos (CA): IEEE Computer Society Press; 1990.
[27] Sławomir S. ARINC specification 653 based real-time software engineering. e-Informatica Softw Eng J. 2011;5(1):

39–49.
[28] Almeida L, Tovar E, Fonseca JAG, et al. Schedulability analysis of real-time traffic inWorldFIP networks: an integrated

approach. Trans Ind Electron IEEE . 2002;49(5):1165–1174.
[29] Hangan A, Sebestyen G. Cyclic executive-based method for scheduling hard real-time transactions on distributed

systems. IEEE International Conference on Intelligent Computer Communication and Processing. Cluj-Napoca: IEEE;
2011. p. 441–444.

[30] Lehoczky J, Sha L, Ding Y. The rate monotonic scheduling algorithm: exact characterization and average
case behavior. Rate monotonic scheduling algorithm: Exact characterization and average case behavior. 1989.
p. 166–171.

[31] Park M. Non-preemptive fixed priority scheduling of hard real-time periodic tasks. International Conference on
Computational Science. Kuala Lumpur: Springer; 2007. p. 881–888.

[32] Nasri M, Brandenburg BB. Offline equivalence: a non-preemptive scheduling technique for resource-constrained
embedded real-time systems (Outstanding Paper). Real-Time and Embedded Technology and Applications Sympo-
sium. Pittsbburgh (PA): IEEE; 2017.

16 W. HU ET AL.

[33] Sucha P, Kutil M, Sojka M, et al. TORSCHE scheduling toolbox for Matlab. Computer Aided Control System Design,
2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent
Control. IEEE; 2009. p. 1181–1186.

[34] Gai K, Qiu M, Zhao H, et al. Dynamic energy-aware cloudlet-based mobile cloud computing model for green
computing. J Network Comput Appl. 2016;59(C):46–54.

[35] Gai K, Qiu M, Zhao H. Cost-aware multimedia data allocation for heterogeneous memory using genetic algorithm in
cloud computing. IEEE Trans Cloud Comput. 2016;PP(99):1–1.

	1. Introduction
	2. Background
	2.1. Multimedia support on RTOS and GPOS
	2.2. Live audio processing using OS
	2.3. The cross-adaptive model based media processing

	3. Literature review
	3.1. The characteristics of the modern real-time multimedia system

	4. Proposed scheduling scheme
	4.1. Model of rate monotonic tasks
	4.2. TDCS algorithm
	4.2.1. Temporal segmentation
	4.2.2. Hyper-period conversion algorithms
	4.2.3. Periodic tasks mapping schemes.

	4.3. Compare TDCS with non-preemptive RMS and RMS
	4.3.1. Schedulability simulation
	4.3.2. Simulation results
	4.3.3. Jitter of individual delay simulation
	4.3.4. Overall task throughput simulation

	4.4. Using TDCS in the MC system
	4.4.1. Slack stealing
	4.4.2. Hierarchy priority scheme

	4.5. Advantages and disadvantages of TDCS
	4.5.1. Contribute to low latency

	5. Conclusions
	5.1. Summary
	5.2. Further work

	Disclosure statement
	Funding
	ORCID
	References

